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We study thermal broadening of the hole spectral function of the two-dimensional t-J model �and its
extensions� within the noncrossing approximation �NCA� with and without the contribution of optical phonons.
We find that phonons at finite temperature broaden the lowest energy quasiparticle peak, however, the string
excitations survive even for relatively strong electron-phonon coupling. Experimental angle-resolved photo-
emission spectroscopy �ARPES� results compare well with our calculations at finite temperature when we use
strong electron-phonon coupling without any ad hoc broadening. In addition, we have studied the role of vertex
corrections and we find that their contribution allows us to achieve the same overall agreement with the ARPES
experimental results but using smaller values for the electron-phonon coupling ���0.5� than that required
���1� when restricting ourselves within NCA.
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I. INTRODUCTION

The cuprous oxide superconductors show a broad peak
near the Fermi energy followed by a “waterfall”-like feature
at higher energies in rather recent high-resolution
angle-resolved photoemission spectroscopy �ARPES�
measurements.1–5 Calculations based on the t-J model give a
well-defined quasiparticle-like low energy peak and higher
energy “string-like” excitations.6,7 The results obtained from
the t-J and the t-t�-t�-J models, using an artificial broadening
of the lowest energy peak and of the other peaks correspond-
ing to the string excitations, agree reasonably well with the
experimental spectra.7 Furthermore, there are similar studies
using the Hubbard and related models8–10 also indicating that
the above features seen in the ARPES studies could be due to
higher energy hole excitations arising naturally in these
strongly correlated electronic models.

In this paper we consider the role of finite temperature
and of the coupling of the hole to optical phonons �within the
t-J-Holstein model�, as recent experiments have provided in-
creasing evidence that electron-phonon coupling is strong in
cuprates.1,11–13 Our goal is to examine �a� whether or not the
string excitations, claimed in Ref. 7 to be the cause of the
waterfall-like features seen in the ARPES studies, survive the
presence of such strongly coupled phonons and �b� whether
or not a natural broadening mechanism due to �i� finite tem-
perature and/or �ii� the coupling to phonons can give a rea-
sonable explanation of the observed features of the ARPES
spectra.

The problem of the coupling of electrons to optical
phonons within the t-J-Holstein or the Hubbard-Holstein
model has been studied by various authors14–22 from a per-
spective different than that of the present paper mentioned in
the previous paragraph. Ramsak, Horsch, and Fulde14 in-
cluded the effects of optical phonons but they focused their
study on the quasiparticle effective-mass renormalization in
strongly correlated electrons. In more recent studies the cou-
pling to phonons is included in order to investigate various
aspects of the polaronic regime and how it affects the

electron/hole spectral properties using diagrammatic Monte
Carlo,15,16 the dynamical cluster approximation,17 exact
diagonalization,18 and self-consistent Born approximation
�SCBA�.19 Sangiovanni et al.20 have used a Hubbard-
Holstein model within the dynamical mean-field approxima-
tion to investigate the effects of Coulomb repulsion on the
electron-phonon interaction. Gunnarsson and Rösch21 have
carried out a SCBA including vertex corrections of the un-
doped t-J model with coupling to phonons. Bonca et al.22

have attempted to calculate the spectral function of a hole in
the t-J-Holstein model by means of exact diagonalization
within a limited functional space. Calculations based on the
t-J model at finite temperature have been done using the
Lanczos method,23 quantum Monte Carlo �QMC�24 and re-
cently using the so-called hybrid dynamical momentum av-
erage �HDMA� method.25,26 While the results obtained from
the Lanczos method and the QMC are quite useful, the con-
clusions drawn from these methods should be taken with
some caution; for example, the Lanczos method can be ap-
plied to very small size lattices, and the so-called maximum-
entropy technique which is utilized by QMC cannot easily
uncover important details of the spectral function such as the
high-energy peaks due to string excitations.

As we have already mentioned, the goal of the present
paper is quite different in focus from all of the above studies.
Our study is closely concerned with the role of phonons and
finite temperature on the broadening of the string excitations6

of a hole in a quantum antiferromagnet. In Ref. 7 it was
proposed that the recent high-resolution ARPES experi-
ments, in which the “waterfall” features were seen,2–4 were
in fact observations of the presence of these string excita-
tions. In Ref. 7, this was demonstrated by using an artificial
broadening of the zero-temperature results of the t-J model
and its extensions. In the calculations to be presented here,
the role of phonons and finite temperature are taken into
account, without any artificial broadening, in order to study
the robust nature of these string excitations, their natural
broadening, and to find out if they can account for the
ARPES measurements.

PHYSICAL REVIEW B 78, 064508 �2008�

1098-0121/2008/78�6�/064508�11� ©2008 The American Physical Society064508-1

http://dx.doi.org/10.1103/PhysRevB.78.064508


In this paper with the goal outlined in the previous two
paragraphs, we extend the method introduced in Ref. 27 and
developed in Refs. 6, 7, and 28 at finite temperature and we
also include the role of optical phonons. In Refs. 6 and 27
the boson degrees of freedom were treated within the so-
called spin-wave approximation and their coupling to elec-
tron and hole degrees of freedom is linearized with respect to
boson creation operators. Furthermore, the self-consistent
Dyson’s equation for the single-hole spectral function was
solved within the so-called noncrossing approximation
�NCA� where only topologically “planar” diagrams are re-
tained. In the present paper we work within the same linear-
ized Hamiltonian and we include the linear coupling to op-
tical phonons as captured by the Holstein electron-phonon
interaction. The calculations are carried out at finite tempera-
ture by solving the Dyson’s equation within the NCA for
both diagrams which include propagation of spin-wave exci-
tations and diagrams which include phonon propagation. We
find that together the phonons with the inclusion of the ther-
mal broadening at room temperature give rise to a broadened
spectral function which exhibits similar characteristics to
those found in the ARPES studies. More precisely, the con-
clusions of Ref. 7, that the features of the ARPES spectra can
be understood as a result of broadening the peaks of the
string excitations, are valid without the need to artificially
broaden the spectral function. Furthermore, as it is well
known, the leading vertex correction due to coupling to spin
waves is zero and other higher order vertex corrections give
negligible contribution.28 In the present calculation we in-
clude the leading �two-loop� vertex corrections due to the
hole-phonon coupling and due to the coupling of the hole to
spin-wave excitations. We conclude that the contribution of
vertex corrections allows us achieve the same qualitative
agreement with the experimentally determined hole spectral
function using a smaller value for the electron-phonon cou-
pling constant ��0.5 as compared to the value of ��1
required when restricting ourselves within the NCA.

In the following section �Sec. II� we describe the formal-
ism and the approach. In Sec. III we present our results for
the spectral function obtained by a numerical solution of the
Dyson’s equation. In Sec. VI we compare our results with
the experimentally determined spectral function. In Sec. V
we include the contribution of the vertex corrections and in
Sec. IV we present the main conclusions drawn from the
present study.

II. FORMULATION

The motion of a single hole in a spin-1
2 Heisenberg

antiferromagnet29 in a two-dimensional �2D� square lattice
has been extensively studied using the 2D t-J model:7

H = − t �
�i,j�,�

�ci�
† cj� + H.c.� + �

�i,j�
�JSi

zSj
z +

Jxy

2
�Si

+Sj
− + Si

−Sj
+�� .

�1�

The first term is the usual hole-hopping term which operates
in a space of singly occupied sites and the second and third
form the usual Hamiltonian of the Heisenberg antiferromag-

net where we have allowed for a possible anisotropy of the
coupling between the z and the perpendicular spin compo-
nents. While this Hamiltonian has been thoroughly studied
during the last almost two decades using many techniques,
only a handful of methods are shown to yield accurate results
in certain limits. For the case of a single-hole spectral func-
tion, one of such rather successful techniques is the so-called
SCBA.6

A simple way to introduce the coupling of the hole motion
to a single optical phonon branch is by adding to the t-J
model an electron-phonon coupling term by means of the
following Holstein term:

Hel-ph = �0�
k

bk
†bk +

�

	N
�
k,q

ck
†ck-qbq + H.c., �2�

where b† is the optical phonon creation operator, �0 is a
characteristic optical phonon frequency, and � is the
electron-phonon coupling constant.

Within the linear spin-wave approximation, using the Bo-
goliubov transformation to diagonalize the Heisenberg term
and by linearizing the hopping term with respect to the spin-
deviation operators, one finds6,27 the following expression
for the Hamiltonian given by Eq. �1�:

H = E0 + J�
k

�fk
† fk + hk

†hk� + �
k

�k��k
†�k + �k

†�k�

+ �
k,q

hk
†fk−q
g�k,q��q + g�k − q,− q��−q

† �

+ fk
†hk−q
g�k − q,− q��−q

† + g�k,q��q� + H.c. �3�

The function g�k ,q� which plays the role of the hole-spin-
wave coupling constant is defined in Refs. 6 and 27.

In order to calculate the effects of finite temperature we
will use the Matsubara technique followed by analytic con-
tinuation to the real frequencies to obtain the reduced
Green’s function.30,31 The self-consistent solution to Dyson’s
equation for the self-energy of the Hamiltonian given by Eq.
�3� is obtained by iterating the following equation with re-
spect to n:

	�n+1��k,�� = �
q

g2�k,q��NqGn�k − q,� + �q�

+ �1 + Nq�Gn�k − q,� − �q�

+ �
−



 d�

�
nF���D0�q,� − ��Im Gr�k − q,��� ,

�4�

Gn�k,�� =
1

� − k − 	n�k,��
, �5�

where Nq=nB��q�, with nB���= 1
e��−1

, and nF�q�= 1
e�q+1

.
Also, k=�k−�, where �k is the zeroth order hole energy,
which according to Eq. �3� is equal to J, and � is the chemi-
cal potential. Here �q is the spin-wave frequency, D0 is the
spin-wave propagator given as follows:
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D0�q,�� =
2�q

�2 − �q
2 , �6�

and Gr�� ,k� is the retarded Green’s function which is ob-
tained from the Matsubara Green’s function by analytic con-
tinuation:

Gr�k,�� = lim
�→0

G�� + i�,k� . �7�

In the case where we include the coupling to the optical
phonons via Eq. �2� we need to add to the above expression
for the self-energy three more terms which are the same as
the above and they are obtained from the above expressions
by replacing the hole-spin-wave coupling constant g by
� /	N, and the spin-wave frequency by the phonon frequency
�0.

While the first two terms of the above equation are of
order unity, it can be shown that the last term is of order of
1 /N because we only consider a single hole. This can be seen
by considering the following identity:

Nh = �
p
�

−





nF���A�p,�� . �8�

The difference between this equation and the third term of
Eq. �4� is the presence of boson propagator, D0, which is not
an extensive quantity. Hence, the order of magnitude of the
last term in Eq. �4� is �O�Nh /N� and vanishes in the ther-
modynamic limit.

The vanishing of the third term in Eq. �4� is also demon-
strated numerically in Fig. 1 which shows the spectral func-
tion for � �

2 , �
2 � with and without the third term in Eq. �4� for

�t=10 and for 4�4, 8�8, and 16�16 lattices, respec-
tively. The solid lines are the spectral functions without the
third term while the dashed lines are obtained by including it
by means of a single iteration of Eqs. �4� and �5�. Notice that
for a large enough size lattice the contribution of this term
becomes negligible. In the rest of our calculations presented
in this paper this term will be neglected.

The self-consistent Dyson’s equation in conjunction with
the so-called NCA �crossing diagrams have a small contribu-
tion as explained in Refs. 6 and 28� is solved by means of an
iterative procedure to obtain the dressed hole propagator and
the hole spectral function. For numerical calculations a small
converging parameter � is needed in the zeroth order Green’s
function as follows:

G�0��k,�� =
1

� − k + i�
. �9�

Starting from the above zeroth order approximation for the
single hole Green’s function, the Dyson’s equation is iterated
until convergence is achieved. Because the lowest energy
quasiparticle peak corresponds to a well-defined excitation,
its width and height, as smaller and smaller values of � are
used, scale proportionally to � and 1 /�, respectively. In ad-
dition, in order to avoid finite-size effects a smaller value of
� requires a larger size lattice. In Ref. 6 it was demonstrated
that the single-hole spectral function has negligible finite-
size effects for lattices larger than 16�16 when a value for

�=0.1t was used. However, when we take smaller values of
�, we need bigger size lattices to eliminate the finite-size
effects. For example, at T=0 and without phonons, we have
found that in order to reach the thermodynamic limit for
� / t=0.1, a 16�16 size lattice is large enough, while if we
take � / t=0.05 or � / t=0.01 lattices of sizes 24�24 and 32
�32, respectively, are required.
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FIG. 1. The calculated spectral function for k= � �

2 , �

2 � for �t
=10 for a 4�4 �top�, 8�8 �middle�, and 16�16 �bottom� lattice
with �dashed line� and without �solid line� the inclusion of the third
term in the self-energy expression given by Eq. �4�.
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Since the quasiparticle peak is a well-defined excitation6

at T=0, its height becomes greater as we decrease �. On the
other hand in the higher energy part of the spectral function,
because it forms a continuum of states, the various Lorentz-
ian contributions overlap strongly because the energy spac-
ing �� of neighboring energy levels becomes exponentially
small with lattice size, i.e., ���e−�N �where N=L�L is the
number of lattice sites�. Figure 2 shows the � �

2 , �
2 � spectral

function with �=0.01t and 0.005t for a 64�64 size lattice.
The difference is mainly in the height of the lowest energy
peak which doubles by decreasing the value of � / t by a
factor of 2 and the other parts of both of the spectral func-
tions are very close. In this paper we have used J=0.3t and
�=0.05t.

III. NUMERICAL RESULTS

A. Finite temperature and no phonons

First of all we study the effect of temperature alone, i.e.,
without any phonons in the system. Figure 3 shows the spec-

tral function for k= � �
2 , �

2 � for T / t=0.001, 0.01, 0.05, 0.1, and
0.15, calculated on a 16�16 lattice. As the thermal broad-
ening is most prominent near the lowest energy well-defined
peak, notice that the multi-peak structure of the spectral
function just above the lowest peak becomes more and more
broadened as the temperature is raised. The effect of finite
temperature is also to move the low energy peaks toward
lower energies �a shift of about 0.05t occurs for T=0.1t�. In
Fig. 4, we present the spectral function for k= �0,0� using
the same values of �. Notice that the peaks which correspond
to string excitations are robust even for temperature as high
as T=0.15t for both cases of the spectral functions.

An intensity plot for �t=10 is presented in Fig. 5 along
with the ARPES intensity.2 Notice that there is a significant
gap or pseudogap between the lowest energy peak and the
first string excitation and also between the first string excita-
tion and the peak which evolves to become an intense peak
near �0,0�. In the following we will discuss that the presence
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FIG. 2. The single-hole spectral function at T=0 with �=0 for
� �

2 , �

2 � calculated on a 64�64 lattice with �=0.005t �solid line� and
0.01t �dashed line�.
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FIG. 3. Hole spectral function for � �

2 , �

2 � without phonons for a
16�16 lattice and for �t=1000, 100, 20, 10, and 6.67.
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FIG. 4. Spectral function for k= �0,0� without phonons for a
16�16 lattice using �t=1000, 100, 20, 10, and 6.67.

FIG. 5. Top: Calculated intensity plot on a 48�48 lattice at
�t=10 and no phonons. Bottom: ARPES intensity along the �0,0� to
�� /2,� /2� direction.
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of optical phonons which couple strongly to the hole excita-
tions can remove these gaps and make the intensity graph
similar to those observed in ARPES.

B. Optical phonons at T=0

As it has been demonstrated the NCA is a good approxi-
mation for the case of the single hole in the pure t-J model.
We need to make sure that it also works for the case of the
perturbative expansion involving terms in which the boson
loops are due to the phonon propagator. Mishchenko et al.15

have shown that by increasing the value of the electron-
phonon coupling strength � and at zero temperature, a cross-
over between the lowest state and the next string state takes
place at ��0.4t and from there on the lowest state, which is
like a narrow quasiparticle peak, always stays dispersionless.
According to their calculation32 the next higher energy state
shows broadening as expected. Here, we will study the effect
of noncrossing diagrams at finite temperature using this t-J
Holstein model with � both below and above the crossover
point15 and then compare our results with experimentally ob-
tained intensity plots.

Experimental values of characteristic phonon energy
scales vary from 30–80 meV.1,15 It is rather well known that
the value of t is approximately 0.4 eV for the cuprate mate-
rials and we have used �0�0.1t and 0.2t both producing
essentially the same spectral functions.15

In Fig. 6 the spectral function for k= � �
2 , �

2 � and for �0
=0.1t with �=0.0, 0.1, 0.2, 0.4, 0.5, and 1.0 calculated on a
16�16 size lattice is presented. These results demonstrate
that the string excitations are quite robust in the presence of
optical phonons. In addition, in Fig. 7 the k= �0,0� spectral
function is shown, for �0=0.1t with �=0.0, 0.1, 0.2, 0.4,
0.5, and 1.0 as calculated on a 16�16 size lattice. The same
conclusion about the robust nature of the string excitations
can also be drawn from this graph.

The spectral function calculated for J=0.3t has some saw-
teeth-like features at an energy just above the lowest peak.
Particularly we can see that the first such peak closest to the

lowest energy quasiparticle peak ��0.2t energy apart� gains
weight as the value of � is increased more and more, a fea-
ture which is also observed in diagrammatic Monte Carlo
�Refs. 15 and 25� and in the HDMA �Ref. 25� calculations at
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FIG. 6. Zero-temperature spectral function at k= � �

2 , �

2 � on a
16�16 size lattice with optical phonons and �0=0.1t and for �
ranging from 0 to 1.0.
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FIG. 7. Calculated spectral function for k= �0,0� and at zero
temperature for a 16�16 size lattice for �=0.0, 0.1, 0.2, 0.4, 0.5,
0.65 and 1.0t.
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FIG. 8. The spectral function for k= � �

2 , �

2 � calculated on a 16
�16 size lattice for �t=1000, 100, 20, 10 and 6.67 at �=0.5t �top�
and �=1.0t �bottom�. Only the vicinity of the lowest energy peak is
shown.
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zero temperature. By increasing the value of � the low en-
ergy peaks move toward lower energies. For values of � of
about 0.5t this energy shift becomes approximately 0.1t.
When �=1.0t, however, this energy shift becomes large
��0.4t�. However, NCA is not expected to be a good ap-
proximation to describe the spectral function for �=1.0t.
Also NCA does not show the crossover phenomena as refer-
enced by Mishchenko et al.15

Phonons cannot broaden the lowest peak at zero tempera-
ture in the perturbative regime �due to energy conservation
requirement� though the higher energy peaks corresponding
to string states are broadened more and more with �. In Sec.
III C �and Fig. 8� we discuss that thermal broadening plays
an important role in filling up the gap between the lowest
peak and the next phonon-generated small peak making an
overall broad lowest energy peak.

C. Finite temperature and optical phonons

Figure 8 shows the vicinity of the lowest energy peak of
the calculated spectral function for k= � �

2 , �
2 � for �=1000,

100, 20, 10, and 6.67, and with �0=0.1t and �=0.5t 
Fig.
8�a�� and �=1.0t 
Fig. 8�b�� on a 16�16 lattice. Notice that
for both cases of electron-phonon coupling, as the tempera-
ture rises the lowest peak and the next phonon-induced peak
smears due to thermal broadening and this gives rise to a
single broad peak as seen in Fig. 8. This is the mechanism by
means of which the lowest energy peak acquires a width of
the same size as that found experimentally. A width of simi-
lar magnitude was used in Ref. 7 to obtain agreement with
the ARPES intensity.

The effects of the electron-phonon interaction are pre-
sented in Fig. 9, in a much wider frequency range, for k
= � �

2 , �
2 � and for �t=10 and for � / t=0, 0.1, 0.2, 0.4, 0.5, and

1.0, where �0=0.1t was used in this calculation. In Fig. 10
the spectral function for k=0 and electron-phonon coupling
�=0.5t and for various values of temperature is shown.

In Fig. 11 �top� we present the calculated dispersion of the
lowest energy quasiparticle peak for the t-J Holstein model
for various values of the electron-phonon coupling in the

range � / t=0–1. In Fig. 11 �bottom� we present the same
calculation carried out for the t-t�-t�-J model for the param-
eter values believed to be needed in order to reproduce the
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ARPES data.7,13 Notice that the only significant effect on the
t-t�-t�-J model is to shift the overall energy by a constant and
does not alter the features of the dispersion. The effect of
phonons on the hole dispersion for the case of the pure t-J
model is more significant �Fig. 11�.

IV. COMPARISON WITH ARPES

The observed ARPES spectral function reveals that the
lowest energy peak for k= � �

2 , �
2 � has a width �0.4 eV and it

is the most intense feature together with the one near k

= �0,0�. As we move from � �
2 , �

2 � toward �0,0�, the lowest
energy peak moves gradually toward higher energies and a
second peak grows near k= �0,0�. At around k= � �

4 , �
4 � the

intensity of the lowest energy peak decreases appreciably
and also smears over a region of higher energy. It is possible
to explain these observations using the results of the calcu-
lation based on the t-J model and the NCA as reported in
Ref. 7 where the contribution of the string excitations gives
rise to rather well-defined peaks in the spectral function at
higher energy, provided that these string excitation peaks
broaden significantly at around � �

4 , �
4 � to give rise to some

rather flat-intensity regions. Furthermore, near k= �0,0�, the
peak which corresponds to a higher energy string excitation
suddenly picks up intensity while the broadening process of
the other string excitation peaks still prevails. This combined
process of spectral-weight transfer and broadening of the
peaks gives rise to the observed energy kinks in the ARPES
intensity. However, these have been reported to be due to the
electron-phonon interactions12,33 and the two energy scales
separating the intermediate smeared intensity region from the
two peaks on the two sides 
one at � �

2 , �
2 � and the other at

�0,0�� have been identified as the threshold of disintegration
of the low energy quasiparticles into a spinon and a holon
branch.3

The role of temperature is to broaden the high-energy
string excitation peaks though the effect is not very
pronounced13 without simultaneously introducing the
electron-phonon coupling. Figure 12 shows the spectral
function for all values of k along the �0,0�→ � �

2 , �
2 � direction

on a 48�48 lattice for �=10, �0=0.1t and for electron-
phonon coupling � / t=0.2, 0.5, and 1.0 and it is compared
with the experimentally obtained ARPES spectral function.2

Notice that for � / t=1 the width of the peak at �� /2,� /2� is
very close to the experimental width of the ARPES spectra.
We use this as a criterion to choose the value of the electron-
phonon coupling and then we examine how well the rest of
the features of the calculated spectral function agree with the

00.511.52

(π/2,π/2)

(0,0)

a)

00.511.52

b)

(0,0)

(π/2,π/2)

00.511.52

(0,0)

(π/2,π/2)

(b)(a)

(d)(c)

FIG. 12. The top-left, top-right and bottom-left spectral func-
tions are along �0,0�→ � �

2 , �

2 � and they are calculated for electron-
phonon coupling � / t=0.2, 0.5 and 1.0, respectively, on a 48�48
lattice. The bottom-right spectral function is the one obtained ex-
perimentally in ARPES. Notice that for � / t=1 the width of the peak
at �� /2,� /2� is very close to the experimental width of the ARPES
spectra.

FIG. 13. Intensity plot of a 48�48 lattice at �=10 for �=0.2
�top� and 0.5 �bottom�.
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experiment. While this value of the electron-phonon cou-
pling is large we will find out in Sec. V, that in order to
achieve the same quality of agreement with the experiment
when we include vertex corrections, the value of the
electron-phonon coupling required is significantly smaller
�close to 0.5�. For k around � �

4 , �
4 �, where the height of the

lowest peak and the higher energy string excitations are al-
most equal, the combined effect of the electron-phonon cou-
pling and the finite temperature produces flat regions with
much less intensity �than that of the lowest peak� in the spec-
tral functions. Notice that using �=0.2 and 0.5t, which are
below and near the possible crossover point,15 the high-
energy peak structure due to string excitations becomes vis-
ible at around k= � �

4 , �
4 � and it is broadened. This mechanism

creates a flat, low intensity region which becomes more pro-
nounced for �=1.0t. We note that in order for our NCA
based calculation without vertex corrections to produce spec-
tral functions and intensity plot �Fig. 14� similar to that ob-
tained by ARPES we need to increase the value of � / t to 1.0
�for �t=10, which corresponds approximately to room tem-
perature�. It can also be observed that as we move from
� �

2 , �
2 � to �0,0� the peak structure which corresponds to string

excitations becomes compressed more and more as a func-

tion of energy and the peaks are closest to each other at �0,0�.
The same features can also be seen in Figs. 13 and 14

which present the intensity plot on a 48�48 lattice �for �
=10, �0=0.1t� and for the same three values of � / t=0.2 �top
part of Fig. 13�, 0.5 �bottom part of Fig. 13�, and 1.0 �top
part of Fig. 14� and it is compared with experimentally ob-
tained ARPES spectral functions �bottom part of Fig. 14�.
Notice that the intensity plot becomes comparable to the ex-
perimentally obtained ARPES spectral function when we use
a large value of the electron-phonon �. As will be discussed
in Sec. V, the presence of vertex corrections due to electron-
phonon coupling allows us to use a smaller value of � to
achieve the same qualitative agreement with the ARPES in-
tensity.

Since the value of t is not accurately known, we do not
have a precise knowledge of the value of room temperature
in units of t. Hence, we also tried higher temperature, T
=0.15t, where more broadening is obtained. As can be no-
ticed from Fig. 15, where � / t=0.5 was used, temperature
could be an additional factor which helps us achieve better
agreement with the observed intensity plot without having to
increase the value of � and enter a domain where the validity
of NCA becomes questionable.

As we are mainly interested for intensity plots along the
�0,0� to �� /2,� /2� cut in the k-space, the inclusion of t� and
t� also does not change the spectral functions very much, as
can be seen in Fig. 16, where the t-t�-t�-J model was used,
taking t�=−0.33t and t�=0.22t and in addition �=10 and �
=0.5t.

V. VERTEX CORRECTIONS

The hole-phonon vertex corrections are expected to be
important for the hole spectra unlike the hole-spin-wave ver-
tex corrections whose contribution have been found to be

FIG. 14. The theoretical intensity plot for a 48�48 lattice at
�=10 and for �=1.0 �top� is compared with the experimentally
obtained ARPES spectra �bottom�.

FIG. 15. Intensity plot calculated on a 48�48 lattice for �
=0.5t and �t=6.67.

FIG. 16. Intensity plot calculated on a 48�48 lattice at �
=0.5t and for �t=10 with t�=−0.33t, t�=0.22t.

FIG. 17. The leading vertex correction to the hole Green’s func-
tion due to its coupling to phonons.

SATYAKI KAR AND EFSTRATIOS MANOUSAKIS PHYSICAL REVIEW B 78, 064508 �2008�

064508-8



small.28 There are some recent calculations indicating the
discrepancy between the spectral function with and without
vertex correction in the strong phonon coupling regime at
zero temperature.15,21 In this section, we present the results
of our study of the role of such vertex corrections, namely,
we improve the NCA by including the leading-order vertex
corrections due to the electron-phonon coupling.

The contributions to the self-energy are shown in the dia-
grams of Figs. 17 and 18 and following the procedure out-
lined in Ref. 30 we obtain the following expressions:

	�����,k� = �
�=�1

�
q1,q2

G�� − ��k−q1

�p� ,q1�
Nq1−q2

��� G��

− ��k−q1

�p� + �q1−q2

��� ,q2�G�� + �q1−q2

��� ,k − q1 + q2�

+ �1 + Nq1−q2

��� �G�� − ��k−q1

p − �q1−q2

��� ,q2�G��

− �q1−q2

��� ,k − q1 + q2��f ����k,q1,q2�Ak−q1

��� . �10�

The index �=1,2 is used in order to distinguish the two
different self-energy diagrams depicted in Figs. 17 and 18.
The two different cases of � are obtained as follows: �i� �
=1. For the diagram depicted in Fig. 17 which involves only
phonon loops �k

���=�k
�p� where �k

�p�=�0 is the phonon fre-
quency which we take to be a constant characteristic optical
phonon frequency �0. In this case f ����k ,q1 ,q2�=�4 /N2. �ii�
�=2. For each of the diagrams depicted in Fig. 18 which
involve one phonon and one spin-wave loop �k

���=�k is the
spin-wave excitation frequency and f ����k ,q1 ,q2�
=�2 /Ng�q1 ,q1−q2�g�k ,q1−q2�.

Here Nk
���=1 / �e��k

�
−1� Ak

+=1+Nk
�1� and Ak

−=Nk
�1�. The

most significant vertex corrections due to purely spin-wave
loops are given in Ref. 28 and are those of Fig. 19. Their
contributions can be calculated at finite temperature in a
simple way as follows. The contribution of the first two dia-
grams is obtained from the expression given by Eq. �4� by
multiplying it with the prefactor � defined in Ref. 28 which is
the factor that renormalizes the spin-wave velocity.29 The
contribution of the third diagram together with the leading-
order one-loop diagram �given by Eq. �4�� is obtained from

the same expression given in Eq. �4� by replacing the spin-
wave velocity �k with �1+���k. The last two-loop diagram
of Fig. 19 is given by the following expression:

	�k,�� = �
p,q

�2�q,p�F�k,q�F�k,p� ,

F�k,q�  g�k,q��Nq
�2�G�� + �q,k − q�

+ 
1 + Nq
�2��G�� − �q,k − q�� , �11�

where �2�k ,q� is defined in Ref. 28.
We found the contribution from vertex corrections to be

small even up to intermediate phonon coupling. However,
the difference is significant in the strong coupling limit. Fig-
ure 20 shows the spectral function with and without the ver-
tex correction using �=0.2t 
Fig. 20�a�� and 0.5t 
Fig. 20�b��
and �t=10. As it can be inferred from Fig. 20�b� the lowest
energy peak at � �

2 , �
2 � becomes more broadened and there is

more rapid transfer of spectral weight as we move along the
� �

2 , �
2 �− �0,0� direction. Hence, owing to the vertex correc-

tions the waterfall-like feature, observed in the ARPES ex-

FIG. 18. The leading vertex corrections �two-loop� to the hole
Green’s function due to phonon �solid wiggly line� and spin-wave
�dashed-wiggly line� loops.

FIG. 19. The leading vertex corrections �two-loop� to the hole
Green’s function due to spin-wave loops.

-4 -2 0 2 4
ω/t

0

0.5

1

1.5

-4 -2 0 2 4
ω/t

0

0.5

1

1.5

(b)

(a)

FIG. 20. Spectral function for �a� �=0.2t and �b� �=0.5t for
�t=10 and on a 16�16 lattice with �dashed lines� and without
�solid lines� vertex corrections due to the electron-phonon
interaction.
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periments, can be reproduced using smaller values of the
electron-phonon coupling. If we include the vertex correc-
tions the � �

2 , �
2 � peak reduces its intensity and at strong

enough coupling the �0,0� high-energy peak becomes more
intense than the lowest energy peak. Therefore, we can re-
main in the intermediate coupling regime �e.g., ��0.5t
shown in Fig. 21� and still be able to reproduce a broadening
similar to that observed in ARPES �bottom part of Fig. 21�.

As a last observation about the features of our calculated
spectral function and its possible relation to the experimental
ARPES result, we would like to notice the small kink near
the lowest peak at �� /2,� /2� in Fig. 12�c� which is due to
the phonon contribution. The same feature is also present in
the presence of vertex corrections 
after very careful exami-
nation this can be seen in Fig. 20�b� also�. It is tempting for
us to say that this resembles the low energy kink observed in
the ARPES spectra.3 As it has become obvious from our
previous discussion the high-energy scale reported in Ref. 3
may be identified as the characteristic energy for string ex-
citations.

VI. CONCLUSIONS

We have studied the t-J Holstein model �including its
t-t�-t�-J extension� at finite temperature within noncrossing

approximation. We have also included vertex corrections due
to the electron-phonon coupling. We find that the string ex-
citations considered in Ref. 7 to account for the waterfall-
like features of the spectral function observed in ARPES
�Refs. 2 and 3� are robust even at strong electron-phonon
coupling and at room temperature. Furthermore, the hole
spectral function obtained from the NCA treatment compares
well with the reported ARPES intensity if we adopt a strong
�� / t�1� hole-phonon coupling. Namely, it exhibits the same
general behavior found in Ref. 7, where an artificial spectral
broadening was used in order to compare with the ARPES
data; in the present treatment this agreement is achieved
without using any such artificial broadening procedure. In
the calculation reported in the present paper, the width and
the energy dispersion of the lowest energy peak near
�� /2,� /2� are reproduced and, in addition, we are able to
qualitatively reproduce the high-energy anomaly, i.e., the
abrupt downturn in intensity which is characterized by two
energy scales and the flat featureless intensity between
them.3

Our calculation, where we included the leading-order ver-
tex corrections due to the electron-phonon coupling, indi-
cates that the vertex corrections are relatively small up to an
intermediate coupling regime. We also found that in the
strong coupling limit, they become significant, as expected.
Furthermore, in order to reproduce the observed features in
the ARPES spectra and intensity plots when we included the
contribution of the vertex corrections, the value of the
electron-phonon coupling needed to achieve the same quali-
tative agreement was found to be smaller than the one
needed using our results obtained with the noncrossing ap-
proximation. This suggests that the qualitative features of the
results obtained within the noncrossing approximation
�which is expected to fail in the strong coupling regime�
might be valid in the regime describing the cuprate materials.

We would like to remind the reader of the limitation of
our approach with respect to the fact that our calculation is
strictly speaking valid only in the light doping regime. Our
calculation is limited to near half-filling and it is surprising
that there is agreement with the experiment well away from
this light doping regime. In order to explain this agreement
one of us in Ref. 7 has argued that the nature of the string
excitations is such that, in the parameter range J / t�0.3, they
do not require true long-range antiferromagnetic order. The
existence of antiferromagnetic correlations may be sufficient
to support long-lived string excitations.
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